The Anaconda installation is community supported, not officially supported.
Take the following steps to install TensorFlow in an Anaconda environment:
Follow the instructions on the Anaconda download site to download and install Anaconda.
Create a conda environment named tensorflow by invoking the following command: 使用如下指令创建一个名为tensorflow的conda环境:
1
C:> conda create -n tensorflow
Activate the conda environment by issuing the following command: 可以用如下指令来激活conda环境:
1 2
C:> activate tensorflow (tensorflow)C:> # Your prompt should change
Issue the appropriate command to install TensorFlow inside your conda environment. To install the CPU-only version of TensorFlow, enter the following command:
(tensorflow) C:\Users\Work>python Python 3.5.0 |Continuum Analytics, Inc.| (default, Dec 1 2015, 11:46:22) [MSC v.1900 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf >>> hello = tf.constant('Hello, TensorFlow!') >>> sess = tf.Session() 2017-05-04 13:48:07.019445: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.020593: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.021313: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.022356: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.024544: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.026923: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.028016: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations. 2017-05-04 13:48:07.028824: W c:\tf_jenkins\home\workspace\release-win\device\cpu\os\windows\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations. >>> sess.run(hello) b'Hello, TensorFlow!'
虽然不知道蹦出来些什么,不过看上去是装好了的样子,可喜可贺可喜可贺~
0x04 后记
Fold runs under Linux; we have not tested it on other platforms. Python 2.7 and 3.3+ are both supported. We recommend installing using Virtualenv and pip. See here for instructions on installing from sources, if that’s how you roll. If you run into trouble, the TensorFlow main site has a list of common problems with some solutions that might be helpful.
Please note that Fold requires TensorFlow 1.0; it is not compatible with earlier versions due to breaking API changes.